Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Kliniceskaa Mikrobiologia i Antimikrobnaa Himioterapia ; 24(4):295-302, 2022.
Artículo en Ruso | EMBASE | ID: covidwho-20242710

RESUMEN

Objective. To study risk factors, clinical and radiological features and effectiveness of the treatment of invasive aspergillosis (IA) in adult patients with COVID-19 (COVID-IA) in intensive care units (ICU). Materials and methods. A total of 60 patients with COVID-IA treated in ICU (median age 62 years, male - 58%) were included in this multicenter prospective study. The comparison group included 34 patients with COVID-IA outside the ICU (median age 62 years, male - 68%). ECMM/ISHAM 2020 criteria were used for diagnosis of CAPA, and EORTC/MSGERC 2020 criteria were used for evaluation of the treatment efficacy. A case-control study (one patient of the main group per two patients of the control group) was conducted to study risk factors for the development and features of CAPA. The control group included 120 adult COVID-19 patients without IA in the ICU, similar in demographic characteristics and background conditions. The median age of patients in the control group was 63 years, male - 67%. Results. 64% of patients with COVID-IA stayed in the ICU. Risk factors for the COVID-IA development in the ICU: chronic obstructive pulmonary disease (OR = 3.538 [1.104-11.337], p = 0.02), and prolonged (> 10 days) lymphopenia (OR = 8.770 [4.177-18.415], p = 0.00001). The main location of COVID-IA in the ICU was lungs (98%). Typical clinical signs were fever (97%), cough (92%), severe respiratory failure (72%), ARDS (64%) and haemoptysis (23%). Typical CT features were areas of consolidation (97%), hydrothorax (63%), and foci of destruction (53%). The effective methods of laboratory diagnosis of COVID-IA were test for galactomannan in BAL (62%), culture (33%) and microscopy (22%) of BAL. The main causative agents of COVID-IA are A. fumigatus (61%), A. niger (26%) and A. flavus (4%). The overall 12-week survival rate of patients with COVID-IA in the ICU was 42%, negative predictive factors were severe respiratory failure (27.5% vs 81%, p = 0.003), ARDS (14% vs 69%, p = 0.001), mechanical ventilation (25% vs 60%, p = 0.01), and foci of destruction in the lung tissue on CT scan (23% vs 59%, p = 0.01). Conclusions. IA affects predominantly ICU patients with COVID-19 who have concomitant medical conditions, such as diabetes mellitus, hematological malignancies, cancer, and COPD. Risk factors for COVID-IA in ICU patients are prolonged lymphopenia and COPD. The majority of patients with COVID-IA have their lungs affected, but clinical signs of IA are non-specific (fever, cough, progressive respiratory failure). The overall 12-week survival in ICU patients with COVID-IA is low. Prognostic factors of poor outcome in adult ICU patients are severe respiratory failure, ARDS, mechanical ventilation as well as CT signs of lung tissue destruction.Copyright © 2022, Interregional Association for Clinical Microbiology and Antimicrobial Chemotherapy. All rights reserved.

2.
Journal of Health and Social Sciences ; 8(1):45-58, 2023.
Artículo en Inglés | Scopus | ID: covidwho-20235055

RESUMEN

The severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) caused a new coronavirus disease (COVID-19), which is highly contagious and its pathogenesis has not been fully elucidated. In COVID-19, the inflammation and blood coagulation systems are excessively activated. SARS-CoV-2 damages endothelial cells and pneumocytes, which leads to disruption of hemostasis in SARS. Thromboembolism is the main cause of mortality in patients with COVID-19. Clots, including pulmonary embolism (PE) and deep vein thrombosis (DVT), ranging from minor to fatal complications of the SARS-CoV-2 infection are known. Individuals with pre-existing diseases are more susceptible to the development of blood clots and poor outcomes. High levels of circulating cytokines and D-dimer (DD) are influential biomarkers of poor outcomes in COVID-19. The latter occurs as a result of hyperfibrinolysis and hypercoagulation. Plasmin is a key player in fibrinolysis and is involved in the cleavage of many viral envelope proteins, including SARS-CoV. Due to this function penetration of viruses into the host cell occurs. In addition, plasmin is involved in the pathophysiology of acute respiratory distress syndrome (ARDS) in SARS and promotes the secretion of cytokines, such as IL-6 and TNF, from activated macrophages. The focus of existing treatment to alleviate fibrinolysis in patients with COVID-19 is the use of systemic fibrinolytic therapy given thrombotic pathology in severe forms of COVID-19 which may lead to death. However, fibrinolytic therapy may be harmful in the advanced stages of COVID-19, when the status of disseminated intravascular coagulation (DIC) changes from suppressed fibrinolysis to its enhancement during the progression of the disease. This narrative review aims to elucidate the pathogenesis of COVID-19, which will further help in precise diagnosis and treatment. Take-home message: The COVID-19 virus disrupts haemostasis and thromboembolism by over activating the inflammation and blood coagulation systems. High levels of cytokines and D-dimer are indicators of pre-existing diseases and blood clots. Systemic fibrinolytic treatment can reduce severe fibrinolysis in COVID-19, which is caused by plasmin. In the late stages of DIC, when fibrinolysis increases, it may be dangerous. To improve therapy and results, understanding COVID-19 pathogenicity is critical. © 2023 by the authors.

3.
Kliniceskaa Mikrobiologia i Antimikrobnaa Himioterapia ; 24(4):295-302, 2022.
Artículo en Ruso | EMBASE | ID: covidwho-2303447

RESUMEN

Objective. To study risk factors, clinical and radiological features and effectiveness of the treatment of invasive aspergillosis (IA) in adult patients with COVID-19 (COVID-IA) in intensive care units (ICU). Materials and methods. A total of 60 patients with COVID-IA treated in ICU (median age 62 years, male - 58%) were included in this multicenter prospective study. The comparison group included 34 patients with COVID-IA outside the ICU (median age 62 years, male - 68%). ECMM/ISHAM 2020 criteria were used for diagnosis of CAPA, and EORTC/MSGERC 2020 criteria were used for evaluation of the treatment efficacy. A case-control study (one patient of the main group per two patients of the control group) was conducted to study risk factors for the development and features of CAPA. The control group included 120 adult COVID-19 patients without IA in the ICU, similar in demographic characteristics and background conditions. The median age of patients in the control group was 63 years, male - 67%. Results. 64% of patients with COVID-IA stayed in the ICU. Risk factors for the COVID-IA development in the ICU: chronic obstructive pulmonary disease (OR = 3.538 [1.104-11.337], p = 0.02), and prolonged (> 10 days) lymphopenia (OR = 8.770 [4.177-18.415], p = 0.00001). The main location of COVID-IA in the ICU was lungs (98%). Typical clinical signs were fever (97%), cough (92%), severe respiratory failure (72%), ARDS (64%) and haemoptysis (23%). Typical CT features were areas of consolidation (97%), hydrothorax (63%), and foci of destruction (53%). The effective methods of laboratory diagnosis of COVID-IA were test for galactomannan in BAL (62%), culture (33%) and microscopy (22%) of BAL. The main causative agents of COVID-IA are A. fumigatus (61%), A. niger (26%) and A. flavus (4%). The overall 12-week survival rate of patients with COVID-IA in the ICU was 42%, negative predictive factors were severe respiratory failure (27.5% vs 81%, p = 0.003), ARDS (14% vs 69%, p = 0.001), mechanical ventilation (25% vs 60%, p = 0.01), and foci of destruction in the lung tissue on CT scan (23% vs 59%, p = 0.01). Conclusions. IA affects predominantly ICU patients with COVID-19 who have concomitant medical conditions, such as diabetes mellitus, hematological malignancies, cancer, and COPD. Risk factors for COVID-IA in ICU patients are prolonged lymphopenia and COPD. The majority of patients with COVID-IA have their lungs affected, but clinical signs of IA are non-specific (fever, cough, progressive respiratory failure). The overall 12-week survival in ICU patients with COVID-IA is low. Prognostic factors of poor outcome in adult ICU patients are severe respiratory failure, ARDS, mechanical ventilation as well as CT signs of lung tissue destruction.Copyright © 2022, Interregional Association for Clinical Microbiology and Antimicrobial Chemotherapy. All rights reserved.

4.
Food Processing: Techniques and Technology ; 52(4):775-786, 2022.
Artículo en Ruso | CAB Abstracts | ID: covidwho-2226506

RESUMEN

The modern food market is undergoing a period of rapid development following the changes in marketing technologies and consumer behavior patterns. Nowadays, people pay more attention to the quality and composition of food products, as well as their functional properties. The present article reviews the international and Russian market of functional foods in order to define the consumer demand for new specialized products. The methods included data comparison, grouping, and systematization. The analysis involved Russian and foreign papers published in 2018-2022 and registered in Scopus, eLibrary, Cyberleninka, and the Library of the Russian Foundation for Basic Research. It also covered the National Demography Project, the Healthy Nutrition Project, and the Strategy for Improving the Quality of Food Products through 2030. Consumers' growing interest in improving their health and immune system proved to be the key factor in the functional food market. The COVID-19 pandemic intensified such trends as the priority of healthy, high-protein, and low-sugar foods. Japan and the USA are the current leaders on this market. Russia supports healthy food policy at the state level. The functional food market is likely to become the most promising and competitive sector of global food economy. Consumer demand for these products is steadily growing: the volume of demand for functional food products will reach 17 trillion rubles by 2027. However, Russian food science needs more research in this area to catalyze import substitution. The Omsk Agrarian University has numerous projects that are meant to increase the competitiveness of the domestic functional food industry.

6.
Acta Haematologica Polonica ; 53(4):273-276, 2022.
Artículo en Inglés | EMBASE | ID: covidwho-2067065

RESUMEN

Introduction: As more data is collected, hematologists will be able to gain more insight into the impact of coronavirus disease 2019 (COVID-19) on pediatric patients with hematological malignancies. Material(s) and Method(s): We analysed 21 cases of COVID-19 in pediatric patients with onco-hematological diseases treated in the Western Ukrainian Pediatric Medical Center from March 2020 through May 2021. The majority of patients (71.4%) were diagnosed with acute lymphoblastic leukemia. All patients from the analyzed cohort had an asymptomatic, mild or moderate course of coronavirus-19 infection. The most common symptoms of COVID-19 were fever, cough, gastrointestinal symptoms, and dermatitis. Severe severe acute respiratory syndrome coronavirus 2 increased the risk of liver toxicity and venous thrombosis. Result(s) and Conclusion(s): Our analysis showed that pediatric patients with hematological malignancies need the same treatment approach for COVID-19 as for other infective complications. Copyright © 2022.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA